Crystal Structure of Platinum Tetrachloride

By M. F. PILBROW

(Institut fur Anorganische Chemie I der Universitat Erlangen-Nurnberg, 8620 Erlangen, Fahrstrasse **17,** *West Germany)*

X-ray powder methods to be isostructural with α -PtI₄ and PtBr,.

THE tetrahedral, $SnI₄$ -type structure assigned to $PtCl₄$ by Falqui,¹ is surprising in view of the pronounced tendency of PtIV to be *six* co-ordinate and also because PtCl, may be expected to be paramagnetic and volatile² and have a simple i.r. spectrum.

These irregularities of the assigned structure prompted reinvestigation of the system and X -ray powder data are now presented which show that $PtCl₄$ is isostructural with α -PtI₄³ and PtBr₄.⁴ X-ray studies of single red needles, prepared by chemical transport of the powder in **1** atm. C1, **(900-300** "C), have so far been precluded because of the hygroscopic nature **of** the product.

Summary Platinum tetrachloride has been shown by Powdered samples, prepared by three methods,⁵ all gave the same X -ray powder pattern (see Table). \dagger The low angle reflexions are sharp and distinct but with progression to higher Bragg angle the lines become broad and diffuse. The data have been rationalised in terms of an orthorhombic unit cell with $a = 11.37$, $b = 13.65$, $c = 5.95$ Å. Assuming $Z = 8$, $D_c = 4.85$ g cm⁻³ $(D_m = 4.5, \text{ lit.}^6 \text{ 4.302}).$

 α -PtI₄ and PtBr₄ crystallise with $Z = 8$ in the *Pbca* space group^{3,4} and the Guinier powder patterns of all three halides are markedly similar with higher Bragg angles for reflexions from similarly assigned *hkl* planes in the order $PtI_4 > PtBr_4 > PtCl_4$. Hence it is presumed that $PtCl_4$ has a $[PtCl_{4/2}Cl₂]_{\infty}$ structure identical with that of α -PtI₄ and PtBr₄ (Figure). The isomorphism is further demonstrated by the agreement between the observed PtCl, line intensities and those calculated using the iodide and bromide structures^{3,4} as models.

t **Attempts to obtain material having the previously describedl X-ray reflexion characteristics have** so **far been unsuccessful.**

 $[PtX⁴/₂X₂]$ _∞ has $C₂$ symmetry which is lowered to $C₁$ if the different Pt-X bond lengths are considered $(X_a \neq X_b)$ \neq X_c \neq X_d).^{3,4} Thus the molecule should have all its 21

vibrational modes i.r. active.[†] 15 bands (377 s, 364 sh, **345** wm, **337** s, **324** sh, **310** w, **290** m, **274** s, **235** wbr, **200 w,**

FIGURE. The configuration of $[PtX4/2X_2]$ ∞ molecules

182 s, **167** sh, **140** w, **130** w, **110** wm)\$ consistent with the existence of terminal and bridging C1 atoms, are observed in the PtC1, spectrum.

This work was carried out within the Royal Society European Programme in conjunction with the Deutsche Forschungsgemeinschaft. I thank these organisations for a fellowship and Dr. G. Thiele for helpful discussion.

(Received, **13th** *December* **1971;** *Corn.* **2114.)**

 \ddagger The tetrahedral symmetry,¹ modified by the C_3 site symmetry has only 6 i.r. active modes.

³These bands are compatible with the seven reported earlier,' but they are better resolved.

¹ M. T. Falqui, Ann. Chim. (Italy), 1958, 48, 1160.
² J. H. Canterford and R. Colton, 'Halides of the Second and Third Row Transition Metals', Wiley, London, 1968.
³ K. Brodersen, G. Thiele, and B. M. Holle, Z. anorg

R. Klement, *2. anorg. Chem.,* 1927, 164, 195. I. M. Dillamore and D. **A.** Edwards, *3. Inorg. Nuclear Chem.,* 1969,31, 2427.