Crystal Structure of Platinum Tetrachloride

By M. F. PILBROW

(Institut für Anorganische Chemie I der Universitat Erlangen-Nürnberg, 8520 Erlangen, Fahrstrasse 17, West Germany)

Summary Platinum tetrachloride has been shown by X-ray powder methods to be isostructural with α -PtI₄ and PtBr₄.

THE tetrahedral, SnI_4 -type structure assigned to $PtCl_4$ by Falqui,¹ is surprising in view of the pronounced tendency of Pt^{Iv} to be six co-ordinate and also because $PtCl_4$ may be expected to be paramagnetic and volatile² and have a simple i.r. spectrum.

These irregularities of the assigned structure prompted reinvestigation of the system and X-ray powder data are now presented which show that $PtCl_4$ is isostructural with α -PtI₄³ and PtBr₄.⁴ X-ray studies of single red needles, prepared by chemical transport of the powder in 1 atm. Cl₂ (900-300 °C), have so far been precluded because of the hygroscopic nature of the product. Powdered samples, prepared by three methods,⁵ all gave the same X-ray powder pattern (see Table).[†] The low angle reflexions are sharp and distinct but with progression to higher Bragg angle the lines become broad and diffuse. The data have been rationalised in terms of an orthorhombic unit cell with a = 11.37, b = 13.65, c = 5.95 Å. Assuming Z = 8, $D_c = 4.85$ g cm⁻³ ($D_m = 4.5$, lit.⁶ 4.302).

 α -PtI₄ and PtBr₄ crystallise with Z = 8 in the Pbca space group^{3,4} and the Guinier powder patterns of all three halides are markedly similar with higher Bragg angles for reflexions from similarly assigned *hkl* planes in the order PtI₄ > PtBr₄ > PtCl₄. Hence it is presumed that PtCl₄ has a [PtCl_{4/2}Cl₂]_{∞} structure identical with that of α -PtI₄ and PtBr₄ (Figure). The isomorphism is further demonstrated by the agreement between the observed PtCl₄ line intensities and those calculated using the iodide and bromide structures^{3,4} as models.

† Attempts to obtain material having the previously described¹ X-ray reflexion characteristics have so far been unsuccessful.

 $[PtX^4/_2X_2]_{\infty}$ has C_2 symmetry which is lowered to C_1 if the different Pt-X bond lengths are considered $(X_3 \neq X_b)$ $\neq X_c \neq X_d$).^{3,4} Thus the molecule should have all its 21

X-Ray powder data for PtCl ₄			
θ	hkl	Iobs	Icale
6.52	020	s	55
8.45	210	vs	100
9.03	111	vw	6
9.90	021	m	15
10.65	121	m	25
11.30	211	vw	7
12.50	230	w	7
12.92	131	m	23
14.35 - 14.65	$\left. \begin{array}{c} 311\\ 231 \end{array} \right\}$	wbr	18
15.10-15.60	$\begin{array}{c} 041 \ 321 \ 240 \\ 102 \ 141 \end{array}$	wbr	15
15.89	112	vw	13
16.90-17.20	$\begin{array}{c}122\ 202\ 241\\420\ 331\end{array}$	sbr	60
18·3	$132\ 151\ 430$	wbr	19
19-2-19-5	$302 \\ 341 \\ 312 \end{bmatrix}$	mbr	$\left. \begin{array}{c} 11\\ 23\\ 20 \end{array} \right\}$
21.8-22.1	$351 \\ 441 $	wbr	22
$24 \cdot 5 - 24 \cdot 7$	213 361 270 } 062 502 223)	vwbr	11
25.0-25.5	$\left.\begin{array}{c} 602 & 602 & 223 \\ 541 & 133 & 512 \\ 611 \end{array}\right\}$	wbr	34

FIGURE. The configuration of $[PtX^4/_2X_2]_{\infty}$ molecules

182 s, 167 sh, 140 w, 130 w, 110 wm)§ consistent with the existence of terminal and bridging Cl atoms, are observed in the PtCl₄ spectrum.

This work was carried out within the Royal Society European Programme in conjunction with the Deutsche Forschungsgemeinschaft. I thank these organisations for a fellowship and Dr. G. Thiele for helpful discussion.

(Received, 13th December 1971; Com. 2114.)

 \ddagger The tetrahedral symmetry, ¹ modified by the C_3 site symmetry has only 6 i.r. active modes.

§ These bands are compatible with the seven reported earlier,⁷ but they are better resolved.

M. T. Falqui, Ann. Chim. (Italy), 1958, 48, 1160.
J. H. Canterford and R. Colton, 'Halides of the Second and Third Row Transition Metals', Wiley, London, 1968.
K. Brodersen, G. Thiele, and B. M. Holle, Z. anorg. Chem., 1969, 369, 154 and B. M. Holle, Thesis, Erlangen, 1968.
G. Thiele and P. Woditsch, Angew. Chem. Internat. Edn., 1969, 8, 672, and P. Woditsch, Thesis, Erlangen, 1969.
N. V. Sidgwick, 'The Chemical Elements and their Compounds', Oxford University Press, London, 1962.
R. Klemant Z. anorg. Chem. 1927 164, 195

⁶ R. Klement, Z. anorg. Chem., 1927, 164, 195.

⁷ I. M. Dillamore and D. A. Edwards, J. Inorg. Nuclear Chem., 1969, 31, 2427.